Undergraduate research

Building a laboratory syringe pump

Active: 
no

The goal of this short-term project is to build a simple syringe pump which would work both independently and under control from a PC. Inspiration can be found in numerous do-it-yourself (DIY) projects on the web, such as http://www.instructables.com/id/DIY-Syringe-Pump-Using-Stepper-Motor/, http://www.instructables.com/id/3D-Printed-Syringe-Pump-Rack/ or https://hackaday.io/project/1838-open-syringe-pump. The actual work can be as simple as selecting suitable components (stepper motor, motor driver, possibly some microcontroller, screws, nuts, ...), downloading a suitable 3D design, introducing minor design modifications (if any), doing the actual 3D printing (we own the popular Ultimaker II printer) and assembling the stuff.

It is expected that the project will take no more than one or two months, hence the project is suitable for a student who already did some do-it-youself projects (this is not an educational projects, we just need the stuff badly).

The work will be financially very nicely rewarded.

The need for such equipment comes from our research in the domain of microfluidics and electrokinetics, see the description at http://aa4cc.dce.fel.cvut.cz/content/distributed-feedback-micromanipulat.... The interested student might find this project a nice opportunity to step into that fascinating research domain combining engineering and science.

Contact person: 
Zdeněk Hurák
Contact person: 
Jiří Zemánek

Building a Rijke tube

Active: 
no

The task is to build a laboratory experimental platform known as Rijke tube, which is used for experiments in thermo-acoustics. One particular setup is described in a journal paper by Epperlein, J.P., B. Bamieh, and K.J. Astrom. “Thermoacoustics and the Rijke Tube: Experiments, Identification, and Modeling.” IEEE Control Systems 35, no. 2 (April 2015): 57–77. doi:10.1109/MCS.2014.2384971 (see also https://engineering.ucsb.edu/~bamieh/talks/1211_SpongFest.pdf for some workshop slides). The platform will be used for education and research experiments in modeling, analysis and control of spatially distributed systems.

 

Contact person: 
Zdeněk Hurák

General instructions for undergraduate students asking for a (final-year) project

Active: 
yes

We receive numerous inquiries from undergraduate students if there is any research project solved by our group in which they can be involved. The typical motivation is the final-year undergraduate project/thesis but oftentimes even second- or third-year students are expressing their interest. Although it is true that our group is conducting research in a bunch of research directions and there is always a lot of work with which we might need a hand, our experience is that involving a new and inexperienced student directly in any such research project, where the directions are already set, deliverables stricly required and deadlines mercilessly enforced, very often (although not always) turns out an inefficient way to start a collaboration. Therefore we decided to apply the following strategy described in this text.

But first, note that these guidelines are not  to be taken dogmatically. If you are a focused and determined student pursuing his or her own direction who noticed that there is an overlap with one of our research directions (say, you already know that you would like to focus on some numerical optimization issues related to control design because you have already studied some topics in optimization on your own, or you have already accepted a lifetime mission in improving the instrumentation for early cancer detection and you have recently done some intership at a relevant research institute and you have noticed that we are heading in a similar direction), do not hesitate to contact us. We can discuss this individually and there is a good chance to involve you in our research directly. This text is addressed to students who are still exploring the field, aiming to gather experience from diverse areas, not yet sure in which area they want to specialize.

If you - a student - are interested in collaborating with us, first look at our projects (make sure you have watched the videos and read at least the abstracts of papers). This will give you a picture that we enjoy mixing knowledge and skills from applied mathematics, physics, electronics, signals processing, robotics, computer vision, and, of course, control design. Different projects require different blends but this list is roughly characterizing our desirable know-how portfolio. This can hardly be acquired just by attending lectures and reading textbooks...

Luckily, there are are a bunch of very interesting websites that document numerous crazy and fancy projects relying on the same know-how and skills. We suggest that you - an interested student - take some time to browse through them and start thinking if you can come up with anything similar for your own first project. If you propose two or three options, then there is a good chance that there will be an overlap with our own interests and then one of us might be willing to become a supervisor of your project.

These project websites are

http://www.instructables.com/ - a very popular website for the do-it-yourself (DIY) community. Please filter out those technology-unrelated projects first.

https://hackaday.io/ (scroll down) - similar as above but a little bit higher concentration of more advanced projects. These are true geeks and hackers.

http://makezine.com/ - in fact, this is a website of the popular Mage magazine, but they have a list of projects too.

All the three websites above offer gazilions of projects centered around popular (and most often than not also open-source and open-hardware) platforms such as Arduino, Raspberry Pi, BeagleBone, mbed or STM Discovery kit(s), desktop fabrication technologies with digital inputs such as 3D printing, CNC machining and laser cutting, and cheap sensors and wifi modules such as the unbelievably cheap ESP8266 enabling surfing on the wave of "Internet of Things" (IoT). The websites contain not just presentations of these projects but also fairly usable instructions.

Note that although we are encouraging you to make your hands dirty, this does not mean that in your project you will only exercise your soldering and coding skills. You can come up with a project in which you will have a lot of opportunities to practice signal processing tricks with the measured signals, use systematic procedures for building mathematical models of dynamics and solve some optimization tasks in real time.

You can perhaps find some opportunities in your out-of-school activities. For example, are you burning it down on a skateboard/longboard like James Kelly does? Then how about designing a small unit for recording the top speed? But make sure the device can measure the speed up to 130km/h. Perhaps combining several sensing principles by means of Kalman filter or complementary filter could do the best job. Or do you instead enjoy watching your aquarium fish? How about using a camera or two and a computer to record their position and then visualise their collective motion? It might be fun to stimulate the fish somehow and record and analyse their response. Or do you grow some flowers in your room but leave them often unattended (not watered) for a few days? How about designing a feedback control system for watering the flowers based on measuring the dryness of the soil? Could the measurements of the temperature in the room or outdoors be used to augment the control performance with some prediction capability?

Are you getting the point? Not just a screwdriver, soldering iron and keyboard but also algorithms, equations and data...  

The list of equipment available in our lab could give you a picture of what tools can be readily used (you can certainly find some more around at some other departments). Namely, note that we even have a small 3D printer, so you can rely on it should there be a need in your project. You can start playing around with some free editor such as https://www.tinkercad.com/, http://www.123dapp.com/design, parametric http://www.openscad.org/ or in fact any 3D modeller of your choice.

Another resource for learning are the websites of these two companies

http://www.adafruit.com

https://www.sparkfun.com/

These are so-called community-centered companies - geeks, hackers and makers love them. They contribute back to the community by creating various tutorials and also by sharing their code and schematics. Browse through these. But also through their online shop just in order to get a better picture of what is available. (You do not have to do the shopping now, once we agree on a project of a joint interest, we can either do the shopping or reimburse all your major expenses).

Let us explain that by encouraging you to propose a project of this DIY kind, we are not trying to dampen your academic enthousiasm, quite the opposite! It is becoming (again) popular to do such projects at top universities and reinforce the culture of makers, hacker, geeks among engineering students. Have a look at this course at Cornell

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/ - students are asked to present their projects exactly at the places I enlisted above (typically Hackaday).

Or you may want to see this (archived) course at MIT

http://ocw.mit.edu/courses/media-arts-and-sciences/mas-863-how-to-make-a...

or this recent announcement on the website of ECE department at Stanford University

https://ee.stanford.edu/news/courses/new-undergraduate-curriculum-empowe...

Now, unleash your creativity and come up with a project :-) If it is sufficiently crazy and fancy, we can go for it. Based on what you learn within this project, we can start talking later about finding some opportunity for you in some other already running research projects. Just to clarify, we do not view the DIY-like projects that we are referring to in the above paragraphs as inferior to "research projects". In fact, the requirements on the quality of your work and the creativity of your engineering mind is identical. It is just that first we want to see you working on a project of your choice (surely we can finetune the project assignment together, but the initial shape is up to you), because that will give you freedom to find what you truly like, including finding the best proportion among coding, electronics, mathematics, physics, special techniques from our own engineering discipline - control systems....

Contact person: 
Zdeněk Hurák
Contact person: 
Jiří Zemánek

Graphical user interface to control an experimental vehicular platoon

Active: 
no

The goal is to design and develop a graphical user interface (a computer program) for convenient setting of the process parameters of the experimental vehicular platoon (described elsewhere). In addition, convenient uploading of the firmware and other maintenance stuff should be implemented. We have two communication interfaces onboard the slotcars: ZigBee and a proprietary 2.4 GHz protocol, hence some inclination (or at least a strong desire to learn) towards coding for wireless communication is assumed.

Concerning the computer languages, th real-time data acquisition and settings should be done partially in Matlab. We have already implemented some communication interface, which can still be improved (setting the desired speed to all the cars at the same time etc.). The parameter setting for all cars is still not implemented, hence a C code for the onboard system should be written too.

Contact person: 
Ivo Herman

CCD čip jako snímač polohy mikroobjektů

Active: 
no

Cílem projektu je experimentálně ověřit možnost využití standardního snímacího čipu CCD pro účely měření polohy mikroskopických objektů bez použití další optiky. Tento záměr je motivovaný výzkumem v oblasti bezkontaktní mikromanipulace pomocí elektrického pole tzv. dielektroforézy, kdy je možné pomocí mikroelektrod vytvářet takové elektrické pole, které rozpohybuje objekty o velikosti jednotek či desítek mikrometru ať už přírodního či umělého původu. Jde o slibný nástroj, který nachází uplatnění například v medicíně či analytické chemii při detekci, separaci, charakterizaci atp. Hlavní částí platformy pro manipulaci pomocí dielektroforézy je elektrodové pole, nad kterým dochází k vlastnímu pohybu objektů. Toto pole by se tedy vybavilo ze spodu ještě snímacím čipem, aby bylo možné sledovat pohybující se objekty.

Dílčími úkoly projektu by bylo zvolit vhodný čip pro tento účel, navrhnou vhodné mechanické řešení jeho umístění a najít také takové osvětlení, který by na čipu vytvořilo kvalitní obraz scény. Dále by byla práce orientována experimentálně především na srovnávání dat z CCD čipu s obrazem pořízeným pomocí běžné kamery. Po úspěšné realizaci snímací soustavy by projekt pokračoval návrhem metod pro zpracování dat z CCD senzoru, hlavně tedy získání polohy jednotlivých objektů.
 

Platforma pro magnetickou manipulaci

Active: 
no

Cílem projektu je finalizace platformy pro planární manipulaci s objekty pomocí magnetického pole. Na našem pracovišti je postavena funkční verze takového manipulátoru, která se skládá ze čtyř stejných a samostatných modulů. Každý modul obsahuje budicí elektroniku, procesor ARM Cortex M3, komunikační rozhraní RS-485 a čtyři cívky. Z těchto modulů lze sestavit platformu s celkem 16 cívkami a nad ní následně pohybovat s jednou nebo několika kovovými kuličkami. Manipulace se děje valením a smýkáním kuličky, při pohybu tedy nedochází k levitaci. Poloha se v současné době měří pomocí dotykové rezistivní fólie. 

Cíle projektu budou po domluvě s řešitelem orientovány na některé z následujících oblastí:

  • Realizace modulu pro zpracování signálu z dotykové rezistivní fólie. Tento modul bude naměřená data odesílat přes rozhraní RS-485 či USB
  • Programování a testování zavaděče (bootloader) pro řídicí procesory, který umožní naprogramovat moduly po komunikační sběrnici RS-485.
  • Rozšíření současného firmware: implementace nových příkazů, měření a regulace proudu cívkou, realizace komunikace s deskou rozšiřující vstupy a výstupy.
  • Experimenty s měřením magnetického pole a jeho využitím pro určování polohy objektu.
  • Vytvoření systému pro zpracování obrazu z kamery k měření polohy a natočení kuličky.
  • Odladění komunikační knihovny pro Matlab/Simulink doplněný o Realtime Toolbox či Realtime Windows Target.
     

Řízení formace kvadrokoptér AR.Drone 2.0

Active: 
no

Cílem projektu je realizovat řízení pěti kvadrokoptér AR.Drone 2.0 pro udržování formace. Řízení by probíhalo tak, že jednu z kvadrokoptér by pilotoval člověk a další 4 by samostatně upravovaly svou polohu tak, aby s první udržovali nastavenou formaci. Pro účely vzájemné lokalizace by se pravděpodobně využil obraz z kamer na palubě kvadrokoptér. Konkrétně lze pracovat buď se zjištěním polohy ostatních kvadrokoptér, nebo s lokalizací vůči okolnímu prostředí. Alternativně by bylo možné prozkoumat možnosti rozšíření palubní instrumentace o dodatečné senzory, kupříkladu ultrazvukové snímače. Jedna taková aktivita využívající Arduino je popsána na https://gist.github.com/4152815#droneduino.

AR.Drone 2.0 je komerční kvadrokoptéra se standardním uspořádáním čtyř samostatně řiditelných vrtulí. Na palubě nese řídicí počítač, HD kameru pro čelní pohled, podhledovou kameru pro odhad rychlosti vůči zemi, dále inerciální jednotku s gyroskopy a magnetometry, tlakový senzor pro měření výšky atd. AR Drone 2.0 se standardně pilotuje pomocí tabletu či chytrého telefonu přes WiFi, ale umožňuje i vývoj vlastních pilotovacích programů. Více informací najdete na stránkách výrobce: http://ardrone2.parrot.com/

Řídicí program by mohl být připraven buď přímo pro palubní počítač, ale pravděpodobněji budou kvadrokoptéry řízení z pozemního stanoviště. Pro pilotování a zadávání příkazů by byl využit tablet iPad (či alternativně tablet s Androidem), který by požadavky zasílal řídicímu počítači. K AR.Drone je dostupné SDK přímo od výrobce, které zprostředkovává komunikaci s kvadrokoptérou a dovoluje nastavovat parametry a zasílat příkazy pro autopilota, poskytuje základní zpracování obrazu pro určení polohy známých značek ve scéně atp. Kromě toho vznikají alternativní zjednodušené SDK pro zajištění komunikace s AR.Drone. Řídicí program by tedy stavěl buď na originální, nebo jiné dostupné knihovně. Projekt je tedy zaměn pouze na návrh nejvyšší řídicí vrstvy, nikoli na řízení letu.

V rámci letní stáže ve skupině AA4CC tuto problematiku již rozpracoval Jaroslav Halgašík. Jeho blog zaznamenávající jeho práci je http://yerrix.blogspot.cz/search/label/AR.Drone.

Aktuálně se touto prací bude zabývat Michal Kaprál v rámci bakalářské práce, o které bude průběžně informovat na http://ardronex.blogspot.cz/. Je ale žádoucí tým studentů pracujících v této oblasti rozšířit, ať už formou individuálního nebo týmového projektu.

Contact person: 
Zdeněk Hurák
Contact person: 
Jiří Zemánek

iPad jako operátorská konzole pro planární manipulátor

Active: 
no

Cílem projektu je vytvořit uživatelské rozhraní pro řízení planárního manipulátoru pomocí tabletu iPad. Práce by se týkala dvou různých manipulátorů, které se principálně liší ale v některých aspektech jsou podobné. Jednak jde o manipulátoru, který je založený na tzv. dielektroforéze, a druhý, který využívá tzv. magnetoforézu. V prvním případě se pomocí sady mikroelektrod vytváří a tvaruje elektrické pole, které dovoluje pohybovat s miniaturními objekty o velikosti jednotek až desítek mikrometrů. Ve druhém případě se využívá matice elektromagnetů pro vytváření magnetického pole, které pohybuje s jednou nebo několika kovovými kuličkami s rozměrem o několik řádů větším (jednotky milimetr).

Uživatelské rozhraní by jednak poskytovalo operátorovi informaci o aktuálním stavu platformy, především tedy zobrazení aktuální polohy jednotlivých objektů ať už pomocí promítnutí obrazu z kamery snímající akční prostor, nebo pomocí grafické vizualizace. Dále by rozhraní dovolovalo zadávat cílové polohy a dráhy pro jednotlivé objekty pomocí dotyků. Součástí práce by byla i realizace propojení mezi uživatelským rozhraním na tabletu a samotným manipulátorem. iPad by buď komunikoval s PC, na kterém by běžel program ovládající platformu, nebo by se iPad připojil přímo k manipulátoru pomocí bezdrátové sítě, či přes systémový konektor.

Výhodou pro řešení projektu je předchozí znalost jazyka Object C a vlastnictví počítače Mac s procesorem Intel. Ani jedno však není nutnou podmínkou. iPad pro ladění bude k dispozici.

Evaluation of methods for measurement of a position on a planar surface

Active: 
no

The goal of this student project is to investigate and evaluate several methods for measurement of a position of a single or multiple objects in a small planar arena (say, up to 1m2). The task is motivated by the currently ongoing research in planar feedback manipulation such as positioning an iron ball on top of a rectangular array of electromagnets.   

The particular list of methods that should be studied, evaluated and compared is:

  • processing the images taken by a camera observing the global scene (from above)
  • resistive foil
  • LED matrix
  • set of IR sensors
  • capacitive sensors
  • magnetic sensors

The task needs a creative student with some modest hobby-level skills in electronics. These could be developed while working on the project, of course. The willingness to learn these hardware oriented skills is crucial.

As a continuation of this task, some development of algorithms for the chosen hardware platform is expected.

Contact person: 
Jiří Zemánek

Using state estimator methodologies for data processing - summer internship at LMS International, Leuven, Belgium

Active: 
no

One of our industrial partners - LMS International, a hi-tech company located in Leuven, Belgium - is offering summer internships to top students from the fields of control and automation. The exact period is negotiable but the position should last at least three months. LMS will offer a small apartment in their own dormitory (just next to their facilities) not far from the center of the historial city of Leuven. On top of that, LMS will pay a monthly living allowance of 250 Euro. LMS hosts a lot of foreign students and they are housed in the same building, therefore, a lot of new contacts with people from all around the world will be certainly made. The work started during the proposed started internship can be turned into a graduate project assignment on a supervision of which researchers both from LMS and from AA4CC will collaborate.

Technical problem description: The flexibility of a car body has an influence on vehicle dynamics. The importance of the flexibility of the body during handling maneuvers has already been shown. Full vehicle multibody models are widely used to improve handling and ride comfort performances of passenger cars. However, when focusing on body, it is difficult to validate the simulation results as the forces at the body/suspension interface cannot be measured.

LMS has a unique test-based technology to identify the individual forces acting in the suspension-to-body connection points and to visualize the body-deformation during handling maneuvers. The body force identification is based on strain data. The frequency range of interest is between 0 and 5 Hz. Strain-gauges are capable of accurately measuring the quasi-static body-deformation while the signals are not saturated by rigid-body DC behavior (as would be the case when DC-accelerometers are used). To identify all suspension-to-body forces a large number of strain-gauges is required to achieve enough over-determination for the inverse method for force-estimation. The strain data are measured with a dynamic measurement system (Scadas Mobile 200 channel system). The time-domain body-forces are identified using an inverse methodology. The method requires transfer functions from force-input in the suspension connections to the strain-responses on the body. These transfer functions are measured in trimmed-body condition and represent the calibration of the forces acting on the body relative to the measured strain. Once these transfer functions are measured. The car is brought in its original conditions and road tests are performed, where dedicated maneuvers either with a test pilot or test robot are performed. With the measured operational strain and the strain-over-force transfer functions the time-domain forces can be estimated using matrix inversion.

The procedure that will be investigated will first compute an initial guess of the suspension forces based on the matrix inversion method that has been used in the past. To improve the accuracy, the obtained force time series are applied to a mathematical model of the car, which calculates accelerations on the body of the car. During the operational measurements with the strain gauges, also accelerations on the same locations as in the mathematical model are recorded. Accelerometer instrumentation is a much easier process then strain gauges. Based on the differences between the measured accelerations and the ones computed by the model, corrections on the initial suspension forces are calculated. The latter will be performed based on methodologies from the control community, called state estimation methodologies. The most well-known state estimator is the Kalman filter. More advanced methods are extended Kalman filter, unscented filter, grid based methods, particle filter, moving horizon estimator, …

In this thesis, a study will be performed on a CAE model to determine good sensor locations (observability of the body forces). The whole procedure will be tested on a CAE model. Also experimental data will be put available

Contact person: 
Zdeněk Hurák
Syndicate content