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Abstract. This paper introduces a novel distributed adap-
tive consensus protocol to solve the distributed consensus
problem for multi-agent systems with general linear time-
invariant dynamics and undirected connected communica-
tion graphs. The presented protocol proposes a solution to
the problems of recent adaptive consensus protocols with
large or unbounded coupling gains by introducing a novel
coupling gain dynamics, that allows the coupling gains to
synchronize and decay to some estimated value. The pro-
posed protocol does not require any centralized information,
therefore it can be implemented on agents in fully distributed
fashion.
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1. Introduction
In last two decades, a great effort has been made in

distributed control and estimation in formation of mobile
robots, satellites and vehicles. Previously developed the-
oretical results in control of single-agent system motivated
the designs of recent distributed cooperative controllers and
observers using state or output-feedback in continuous and
discrete-time. The static consensus protocols presented in
[1], [4] and [5] use a state-feedback with coupling gain that
satisfies a bound calculated from the smallest non-zero real
part of Laplacian eigenvalues. The graph structure has to be
known to calculate this bound. Therefore centralized infor-
mation is required by each agent.

Distributed adaptive consensus protocols propose a so-
lution to this problem on undirected connected graph [2] as
well as on directed graphs having a spanning tree with leader
as a root node [3]. These protocols do not rely on any cen-
tralized information, therefore they can be implemented by
each agent separately without using any global information.
The protocols guarantee cooperative stability, however ben-

efits from adaptability suffers from possibly large control ef-
fort and lack of robustness to noise.

In this paper we introduce an adaptive consensus pro-
tocol on undirected connected graphs consisting of identical
agents with linear time-invariant (LTI) dynamics. The proto-
col introduces a novel coupling gain dynamics allowing the
coupling gains to synchronize and decay. This is found to
solve the above mentioned difficulties of recently proposed
adaptive consensus protocols.

This paper is organized as follows. Section 2 in-
troduces the basic notation and graph preliminaries used
throughout the paper. Section 3 states the problems of recent
adaptive consensus protocols. The novel adaptive consensus
protocol is presented in Section 4. Numerical simulation ver-
ifying the introduced protocol are given in Section 6. Section
7 concludes the paper.

2. Preliminaries
In this paper the following notations and definitions are

used. Rm×n denotes the set ofm×n real matrices. A matrix
M = diag(v) for v ∈ Rn denotes Rn×n diagonal matrix
with elements of v on the diagonal. IN ∈ RN×N is the
identity matrix. Positive (semi)-definite symmetric matrix
is denoted by M � (�)0. Positive (non-negative) vector
denoted by v > (≥)0 has all positive (non-negative) entries.
The sum over all agents is denoted by

∑
i for i = 1, . . . , N .

An undirected graph is given by G = (V, E), where
V = {v1, . . . , vN} is a non-empty finite set of vertices and
E ⊂ V × V is a set of edges. An edge is a pair of nodes
(vi, vj), vi 6= vj , representing that agents i and j can ex-
change information between them. In sequel, the graph G is
assumed to be undirected, connected and simple.

The adjacency matrix E = [eij ] ∈ RN×N associated
with the graph G is defined by eij = eji > 0 if (vi, vj) ∈ E ,
otherwise eij = eji = 0. Define the vector of node degrees
as d = E1N , and the degree matrix as D = diag(d). Then
the graph Laplacian is defined by L = D − E.
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3. Problem statement
Consider a graph G consisting of N identical agents

with general LTI dynamics

ẋi = Axi +Bui, i = 1, . . . , N (1)

where xi ∈ Rn is the state, ui ∈ Rm is the input, and A ∈
Rn×n and B ∈ Rn×m are constant matrices. The matrix A
is not necessarily stable but the double of matrices (A,B) is
assumed to be stabilizable.

The goal is to design a control law to solve the coop-
erative regulator problem in sense of limt→∞ ||xj − xi|| =
0,∀i, j without requiring any centralized information. A so-
lution to this problem is proposed in [2] by an adaptive con-
sensus protocol

ui = K
∑
j cijeij(xi − xj), i = 1, . . . , N (2)

ċij = χijeij(xi − xj)TΓ(xi − xj) (3)

where χij = χji are positive constants, cij is the time-
varying coupling gain between i-th and j-th agent and K ∈
Rm×n and Γ ∈ Rn×n are the feedback and adaptation gain
matrices, respectively.

The recently introduced adaptive consensus protocols
[2], [3] do not require any centralized information, therefore
the agents can be implemented in a fully distributed fashion.
However, they also introduce several drawbacks.

Since the coupling gains’ derivative is a monotonically
increasing function, the coupling gain values rise as long as
there is some error ||xi − xj || 6= 0 for any i, j. Hence the
farther the initial conditions of the agents are, the higher the
final values of the coupling gains. The coupling gains might
therefore attain higher value than it is necessary for the net-
work stability. They are also decoupled, therefore in general
they end up with different final values and the network gets
unbalanced.

Additionally, if there is any noise in state measure-
ments, the coupling gains would rise reaching some satura-
tion level. Therefore, instead of implementing the adaptive
consensus protocol, the coupling gains could from the outset
be initialized to this saturation value.

Thus, to avoid these difficulties we introduce a novel
adaptive consensus protocol that allows the coupling gains
to synchronize and decay.

4. Adaptive consensus protocol
Let each agent implement a control input in the form

ui = ciK
∑
j eij(xj − xi), i = 1, . . . , N (4)

where ci is the time-varying coupling gain associated with
i-th agent. An i-th agent dynamics is then given by

ẋi = Axi + ciBK
∑
j eij(xj − xi) (5)

Let each agent implement the coupling gain dynamics

ċi =
∑
j eij(xj−xi)TΓ(xj−xi)+

∑
j eij(cj−ci)−`(ci−κi)

(6)
where ` > 0 is a constant, κi ≥ 0 is a constant estimated by
an i-th agent and Γ ∈ Rn×n is the adaptation gain matrix.

The gain matrices K and Γ are designed by LQR
method. Let Q = QT ∈ Rn×n and R = RT ∈ Rm×m
be positive definite symmetric matrices, then

K = R−1BTP (7)

Γ = PBK (8)

where positive definite matrix P ∈ Rn×m is the unique so-
lution of the algebraic Riccati equation

0 = ATP + PA+Q− PBR−1BTP. (9)

The introduced adaptive consensus protocol (4, 6) is
motivated by [2], however there are several major differ-
ences. Note that different from [2], each agent has only one
adaptive gain, much along the line of [3], that is required for
the coupling gain synchronization.

The coupling gain dynamics (6) is not a monotonically
increasing function. It consists of three main terms. The
first term on the right-hand side is the non-negative quadratic
term motivated by [2]. Its purpose is to push the coupling
gains to higher values until the states get synchronized. The
second term on the right-hand side synchronizes the cou-
pling gains and thereby solves the above mentioned problem
with different coupling gains. The third term on the right-
hand side pushes the coupling gains to κi and by this solves
the problem with high gains. The value of κi is estimated by
an estimation algorithm. The strength of the decay term is
determined by the constant `.

Assume the coupling gain dynamics (6) with κi = 0,
∀i, then the network dynamic is give by

ẋi = Axi + ciBK
∑
j eij(xj − xi) (10)

ċi =
∑
j eij(xj − xi)TΓ(xj − xi) +

∑
j eij(cj − ci)− `ci.

(11)

Define the virtual leader x0 = 1
N

∑
i xi, the virtual

tracking error δi = xi − x0 and the coupling gain transfor-
mation zi = ci−β, where β is some positive constant. Then
the the network dynamics (10, 11) transformed to the new
coordinates (δi, zi) is given by

δ̇i = Aδi + ziBK
∑
j eij(δj − δi) + βBK

∑
j eij(δj − δi)

(12)
żi =

∑
j eij(δj−δi)TΓ(δj−δi)+

∑
j eij(zj−zi)−`zi−`β.

(13)

This network dynamics consists of some nominal dy-
namic and the non-vanishing perturbation term (−`β), there-
fore note it as the perturbed nominal dynamics. If the nom-
inal dynamics is globally exponentially stable, following [6,
Lem. 5.2] it can be shown, that the perturbed nominal dy-
namics (12, 13) is uniformly ultimately bounded.
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Lemma 1. Consider the network dynamics (5, 6) with κi =
0, ∀i. Then its solution is globally uniformly ultimately
bounded, i.e. there exist a positive constant µ and ν, and for
every ε ∈ (0, ν) there is a positive constant tµ = tµ(ε) such
that if ‖δ(t0), z(t0)‖≤ ε, then ‖δ(t), z(t)‖< µ, ∀t ≥ t0+tµ.

Since the proof of Lemma 1 is extensive it will be pub-
lished later. Lemma 1 reveals an important property of the
network dynamics (5, 6). It says that for κi = 0, ∀i, the net-
work dynamics is uniformly ultimately bounded, i.e. in the
worst case the solution of the network dynamics ends up in
a bounded set.

Having uniform ultimate boundedness is necessary, but
not sufficient for practical implementation of the protocol.
For that reason we introduce the full form of the proposed
coupling gain dynamics (6).

In comparison to the coupling gain dynamics from
Lemma 1, it contains an additional term (+lκi), that can can-
cel effects of the non-vanishing perturbation term (−lβ).

Assuming coupling gain dynamics (6), the total net-
work error dynamics reads

δ̇i = Aδi + ziBK
∑
j eij(δj − δi) + βBK

∑
j eij(δj − δi)

(14)

żi = −`zi + `κi − `β +
∑
j eij(zj − zi)

+
∑
j eij(δj − δi)TΓ(δj − δi). (15)

By increasing each κi, effects of non-vanishing pertur-
bation term are gradually reduced until the condition κi = β,
∀i is met. If κi ≥ β, ∀i the non-vanishing perturbation term
is cancelled, the dynamics reduces to the case of nominal
dynamics and it gets globally exponentially stable.

5. Estimation algorithm
The uniform ultimate boundedness provides time nec-

essary to estimate the value of κi and get the network dy-
namics to exponentially stable region. The goal is now to
estimate κi from the i-th agent trajectory. We require low
value of κi to minimize the control effort, but at the same
time sufficiently high to cancel effects of the non-vanishing
perturbation.

The proposed estimation algorithm is based on the
interval-halving method. Presence of the non-vanishing per-
turbation in the network dynamics is recognized from os-
cillating trajectory. Note that oscillating trajectory implies
oscillating coupling gain. Each agent samples the coupling
gain value ci by the sampling frequency fs and records it
in the time window 4t. The higher and the lower recorded
values are averaged and substituted for κi. This procedure is
continuously repeated. When the oscillations and thus also
the perturbation vanish, the network dynamics reaches the
global exponential stability.

Note that the sampling frequency fs has to be chosen
according to the Nyquist-Shannon sampling theorem. The
sampling rate must exceed 2fmax and the time window 4t
must be greater than 1/fmin, where fmax and fmin are the
highest and the lowest frequency in the system. The decay-
rate, size of non-vanishing perturbation and thus also the fre-
quency and amplitude of oscillations are determined by the
positive constant `.

6. Simulation results
The adaptive control protocol (4, 6) has been simulated

on a graph G consisting of agents described by linear double
integrator dynamics

ẋi =

[
0 1
0 0

]
xi +

[
0
1

]
ui, xi =

[
xi1
xi2

]
, ∀i.

(16)
The interval-halving algorithm for estimation of κi uses the
time window 4t = 5s and the sampling frequency fs =
10Hz. Initial conditions of the agents are

xi1(0) ∈ 〈−10, 10〉, xi2(0) = 0, ci(0) = 0, ∀i.
(17)

Each figure shows two simulations. The simulations of
proposed adaptive control protocol (4, 6) with the algorithm
for estimation of κi are situated on the top of the figures.
The simulations of existing adaptive consensus protocol [2]
are situated on the bottom. In Figures, δ denotes the vector
of errors in state xi1 and c denotes the vector of coupling
gains.

The simulations on the circular graph consisting of 50
agents are shown in Figure 1. The proposed protocol reaches
lower coupling gains with preserving stability.

Assuming small noise acting on states, the responses of
10 agents in circular topology are shown in Figure 2. From
the figure it follows that the proposed protocol is robust to
noise acting on states.

Figure 3 shows the response to the change in the net-
work topology. At the time instance of 30 seconds the graph
topology was switched from the circular graph of 4 synchro-
nized agents to the path graph and 5-th agent was connected
to the end of path. The distance of 5-th agent from the rest
of the network was chosen to be 10. The proposed proto-
col reaches lower values of coupling gains than the existing
adaptive consensus protocol [2], therefore it is found robust
to the change of the graph topology.

7. Conclusion
In this paper a novel distributed adaptive consensus

protocol is proposed, offering solution to the encountered
problems with high gains of recently proposed adaptive con-
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Fig. 1: Simulation of 50 agents on a circular topology.

Fig. 2: Simulation of 10 agents on a circular topology as-
suming noise in state measurements.

Fig. 3: Simulation of 5 agents by change in a graph topology.

sensus protocols. A coupling gain dynamics is introduced,
allowing the coupling gains to synchronize and decay to
some estimated value κi. For estimation of κi, an estima-
tion algorithm based on the interval-halving method is intro-
duced.

A comparison of the introduced protocol with the ex-
isting one is shown by simulations. The introduced protocol
preserves stability with lower coupling gain values, lower
control effort and robustness to the measurement noise act-
ing on states.

The proper choice of the decay rate ` and the design of
algorithms for estimation of κi is a topic of future research.
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