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Abstract: The paper presents a novel approach for the analysis of a multi-agent system with
arbitrary interaction topology and identical agents. The approach is based on an irrational
transfer function, the Wave transfer function, that decomposes the interactions between the
agents and identifies the travelling waves in the multi-agent system. The approach based on
the travelling waves describes the behaviour of the system from the local perspective, which
is complementary to the traditional overall approach. The proposed approach allows us, for
example, to describe the local effect of the agents that have more than two neighbours.
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1. INTRODUCTION

In recent years, the field of multi-agent systems is progress-
ing rapidly mainly due to the current advances in mobile
robotics, which has opened a large volume of possible
applications. The multi-agent system can nowadays be
represented, for instance, by a platoon of vehicles on a
highway, a pack of mobile robots or more general systems
such as social networks or even Google PageRank, see
Chiang (2012).

The traditional approach for analysis of such a large-scale
linear multi-agent system is by using the algebraic graph
theory, see for instance works by Ren et al. (2007), Olfati-
Saber et al. (2007) or Mesbahi and Egerstedt (2010) for an
introduction to this problematic. Another approach is to
diagonalize the Laplacian, see for instance work of Herman
et al. (2014). The nonlinear systems are traditionally
analysed either by the Lyapunov function, see Moreau
(2005) and Zhang et al. (2012), or by examination of
the passivity of the multi-agent system, see for instance
Chopra and Spong (2006), Arcak (2007) or Zelazo and
Mesbahi (2011).

These methods are very useful in determining whether the
multi-agent system is (un)stable or reaches a consensus.
However, they lack in describing the local behaviour of
the system. For instance, it is very difficult to determine
that some part of the multi-agent system is not properly
tuned and amplifies/attenuates the signal, for instance a
disturbance, or even causes oscillations. Recently, papers
by Martinec et al. (2014a) and Martinec et al. (2014b)
have examined so-called Wave transfer functions that are
tailored for analysis of the local behaviour of a multi-agent
system. These two papers describe the travelling waves
in a path graph, where the agents are linear but non-
identical. In this paper, we extend them by considering
more general graph topologies, where the agents are iden-
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tical but can have more than two neighbours. The paper
provides a mathematical description of the reflection and
transmission of the travelling wave and discusses some
consequences of agent having more than two neighbours.

2. MATHEMATICAL PRELIMINARIES

2.1 Mathematical model of agents

The behaviour of nth agent in a multi-agent system is
described as

Xn(s) = P (s)Un(s), (1)

where s is the Laplace variable, Xn(s) is an output of the
agent, for instance a position, P (s) is the transfer function
of the agent, that means a model of the dynamics of the
agent, and Un(s) is the input to the agent that is carried
out by the local controller of the agent with the task to
equalize Xn(s) with outputs of its neighbouring agents.
We assume that each agent may have arbitrary number of
neighbours, hence,

Un(s) = C(s)
∑
k∈Nb

(Xk(s)−Xn(s)), (2)

where Nb is a set of neighbouring agents of the nth agent
and C(s) is the transfer function of the controller. The
model of the agent is then

Xn(s) = M(s)
∑
k∈Nb

(Xk(s)−Xn(s)), (3)

where M(s) = P (s)C(s), which can be alternatively
expressed as

Xn(s) = TN (s)
∑
k∈Nb

Xk(s), (4)

where TN (s) = M(s)/(1 + NM(s)) and N is the number
of neighbours of nth agent.

2.2 Travelling wave description

The key idea of the Wave transfer function approach for
a multi-agent system with path graph topology, presented



in Martinec et al. (2014a), is that we can represent the
output of each agent, for instance the position, by two
components, A(s) and B(s), which represent two waves
propagating along the platoon in the forward and back-
ward directions, respectively. This assumption is based
on the standard argument for the solution of the wave
equation, see for instance Asmar (2004) (d’Alembert’s
formula). The way how the wave propagates in the platoon
is described by the Wave transfer function (WTF), which
is an irrational transfer function defined described as

G(s) =
Xn+1(s)

Xn(s)
=

1

2
α(s)− 1

2

√
α2(s)− 4, (5)

ifN →∞, where α(s) = 1/M(s)+2 andG−1(s) = 1/G(s).
The mathematical model of the platoon, see Fig. 1 is then
given as

Xn(s) = An(s) +Bn(s), (6)

An+1(s) = G(s)An(s), (7)

Bn(s) = G(s)Bn+1(s), (8)

where n ∈ 〈1, N − 1〉. The leader, n = 0, and the rear-end
agent, n = N , constitute boundaries and cause that the
travelling wave reflects from them. These boundaries are
called forced-end, described as

A1(s) = G(s)X0(s)−G2(s)B1(s), (9)

and free-end, described as

BN (s) = G(s)AN (s), (10)

respectively, where X0 is the position of the externally-
controlled leader.

Fig. 1. Scheme of a multi-agent system with a path graph
topology. The squares are agents with local dynamics
described by G(s). The virtual connections between
the agents, which are created by the local control law,
are illustrated by springs. All the agents are identical.

3. WAVES IN A MULTI-AGENT SYSTEM WITH
OTHER THAN PATH GRAPH TOPOLOGY

This section shows how to generalize the description of
the waves to a more general graph topologies. That is, to
a topology where each agent is allowed to have more than
two neighbours. Throughout the paper, we assume that
the agents are identical.

3.1 Notation of the waves

To describe waves in a multi-agent system with more
general graph topologies we need to introduce a different
notation for the wave components. We replace An and
Bn with W d

n,n+1 and W a
n+1,n, respectively. The first lower

index is the index of the agent where the wave departs,
while the second lower index is the index of the agent
where the wave arrives. The upper index denotes if the
wave is with the departing (’d’) or arriving (’a’) agent.
The example is shown in Fig. 2.

Expressing (6) in this notation gives

Xn(s) = W d
n,n+1(s) +W a

n+1,n(s)

= W a
n−1,n(s) +W d

n,n−1(s), (11)

where we assume that agents denoted (n− 1) and (n+ 1)
are neighbours of nth agent. Similarly, (7) and (8) are
expressed as

W a
n,n+1(s) = G(s)W d

n,n+1(s), (12)

W a
n+1,n(s) = G(s)W d

n+1,n(s), (13)

respectively. Therefore, it holds for the example from Fig. 2
that X1 = W d

1,0 +W a
0,1 = W d

1,3 +W a
3,1 = W d

1,2 +W a
2,1 and

W a
1,2 = GW d

1,2.

Fig. 2. Notation of the wave components in a multi-agent
system.

3.2 Mathematical description of the waves

It was shown in Martinec et al. (2014a) that the wave trav-
elling in a multi-agent system with a path graph topology
and identical agents reflects only on the path-graph ends:
the leader and the rear-end agent. The situation is more
complicated for the case when the agent has more than
two neighbours. In such a case, the wave partially reflects
on this agent as well, which is described in the following
theorem.

Theorem 1. The transfer function, Tt,N (s), describing how
the wave transmits through the agent with N neighbours,
and the transfer function, Tr,N (s), describing how the wave
reflects from the agent with N neighbours, are

Tt,N (s) =
W d
n,n−1(s)

W a
n+1,n(s)

=
TN (s)(1−G2(s))

G(s)(1−NTN (s)G(s))
, N ≥ 2

(14)

Tr,N (s) =
W d
n,n−1(s)

W a
n−1,n(s)

=
(N − 1)TN (s)G2(s) + TN (s)−G(s)

G(s)(1−NTN (s)G(s))
, N ≥ 1,

(15)

respectively, where (n−1)th and (n+1)th are neighbouring
agents of nth agent.

Proof. We substitute (11) into (4) to obtain

W a
n−1,n +W d

n,n−1 = TN
∑
k∈Nb

(W d
k,n +W a

n,k), (16)



Fig. 3. The detail of the reflection and transmissions of
the wave travelling from the 0th agent from Fig. 2,
where G is the Wave transfer function from (5), Tt,3
and Tr,3 are the transfer functions defined in (14) and
(15), respectively, with N = 3. Notice that all agents
are identical. The waves travelling from 2nd or 3th
agent are propagated analogously.

where we assumed that (n−1)th agent is the neighbour of
nth agent, hence (n − 1)th agent is also a part of set Nb.
Eq. (11) can be alternatively expressed as

W a
n,k = GXn −GW a

k,n = GW a
n−1,n +GW d

n,n−1 −GW a
k,n.

(17)

Substituting (17) into (16) and rearranging it gives

W a
n−1,n +W d

n,n−1 = TN (G−1 −G)
∑
k∈Nb

(W a
k,n)

+NTNG(W a
n−1,n +W d

n,n−1). (18)

Next, we separate the wave arriving from (n− 1)th agent,
that is W a

n−1,n, which yields

(1−NTNG)W d
n,n−1 = TN (G−1 −G)

∑
k∈Nb,k 6=(n−1)

(W a
k,n)

+ (NTNG+ TN (G−1 −G)− 1)W a
n−1,n. (19)

Finally, separating the wave departing from nth agent to
(n− 1)th agent, W d

n,n−1, gives

W d
n,n−1 =

TN (1−G2)

G(1−NTNG)

∑
k∈Nb,k 6=(n−1)

W a
k,n

+
(N − 1)TNG

2 + TN −G
G(1−NTNG)

W a
n−1,n, (20)

where

Tr,N =
W d
n,n−1

W a
n−1,n

=
(N − 1)TNG

2 + TN −G
G(1−NTNG)

(21)

is the transfer function which describes reflection of the
wave from the agent and

Tt,N =
W d
n,n−1

W a
k,n

=
TN (1−G2)

G(1−NTNG)
(22)

describes transmission of the wave through the agent. 2

The interpretation of the theorem is as follows. If there is
a wave travelling to the agent with more than two neigh-
bours, then it is partially reflected from this agent (de-
scribed by Tr,N (s)) and partially transmitted (described
by Tt,N (s)). For example, the output X1(s) of the multi-
agent system from Fig. 3 can be expressed as

X1 = (1 + Tr,3)W a
0,1 + Tt,3W

a
2,1 + Tt,3W

a
3,1. (23)

The output is composed of three parts, since the agent has
three neighbours,: i) wave that travels from 0th agent and
reflects back to 0th agent, ii) wave that travels from 2nd
agent and transmits to the 0th agent, and iii) wave that
travels from 3rd agent and transmits to the 0th agent.
We note that we can equivalently express X1(s) also by
calculating the reflected wave travelling either from 2nd
or 3rd agent.

3.3 Properties of the waves

Theorem 1 reveals interesting relation between the trans-
mitted and reflected waves. It is described by the following
corollary.

Corollary 2. The transfer functions Tt,N and Tr,N are
related as follows

Tt,N − Tr,N = 1, (24)

for N ≥ 2.

Proof. By straightforward substitution for Tt,N and Tr,N
from Theorem 1. 2

Theorem 1 is in agreement with the result from Martinec
et al. (2014a) since, by the following corollary, the wave
in a multi-agent system with a path graph topology and
identical agents reflects only on the path-graph ends.

Corollary 3. If the agent in a multi-agent system has
exactly two neighbours and if the agents are identical then
the wave does not reflect from this agent.

Proof. Substituting N = 2 into (15) gives

Tr,2 =
T2G

2 + T2 −G
G− 2T2G2

=
T2G+ T2G

−1 − 1

1− 2T2G
. (25)

We substitute T2 = 1/α and for G from (5) and get

Tr,2 =
α−1

(
1
2α−

1
2

√
α2 − 4

)
+ α−1

(
1
2α+ 1

2

√
α2 − 4

)
− 1

1− 2
α

(
α 1

2 −
1
2

√
α2 − 4

)
=

0

α−1
√
α2 − 4

= 0, (26)

where we used G−1 = α/2 +
(√
α2 − 4

)
/2. Since Tr,2 = 0,

the wave does not reflect from the agent. 2

One of the important properties of the transfer function
is the DC gain. The DC gain can be used to analyse
the amplification/attenuation of the travelling wave as it
propagates through the agent. The simulation example is
shown in Section 4.2.

Lemma 4. If the open-loop model of the agent, M(s), has
at least one integrator, then the DC gains of Tt,N and Tr,N
depend only on the number of neighbours, N . Specifically,

κt = lim
s→0

Tt,N (s) =
2

N
, (27)

κr = lim
s→0

Tr,N (s) =
2

N
− 1, (28)

where κt and κr are the DC gains of the transfer functions
Tt,N and Tr,N , respectively.

Proof. The proof is given in Appendix A. 2



4. MATHEMATICAL SIMULATIONS

4.1 The travelling waves in the multi-agent system

The mathematical simulations are carried out for P (s) =
1/(s(s + 4)) and C(s) = (4s + 4)/s, which represent a
second order system with a linear friction controlled by
a PI controller. Hence, the overall model of the agent is
M(s) = (4s + 4)/(s2(s + 4)). The topology of the multi-
agent system that we assume is in Fig. 4. We can see
that only the agent indexed P7 has three neighbours. We
choose such a graph topology on purpose to make the wave
transmissions and reflections more transparent.

Fig. 4. The topology of the multi-agent system used
for simulations, where the ’L-node’ is the externally
controlled leader of the system.

The way how the wave propagates in the system with the
topology in Fig. 4 is shown in Fig. 5. The individual panels
show:

top-left The wave is initiated by the leader and propa-
gates to agent P7.

top-middle The wave is being transmitted to ’Q’ and ’R’
parts of the graph (blue circles) and it is also reflected
back to ’P’ part (red crosses).

top-right The wave is reflected from agent R12 and
propagates back to agent P7 (red crosses).

bottom-left and middle The wave arriving to agent P7

from the ’R’ part is transmitted to ’P’ and ’Q’ parts of
the graph. We can see it by a rise of W a

i+1,i (red crosses)
for P1 - P7 and W a

i−1,i (blue circles).
bottom-right The wave travelling from P7 to P1 is

reflected from the leader with the negative sign and
travels back to P7. We can see it by a drop of W a

i−1,i
for P1 - P7 (blue circles).

Independent numerical validation of Theorem 1 is shown
in top panel of Fig. 6. We can see excellent agreement
between the state-space and the ’wave’ approach. The
bottom panel shows individual waves traveling through
the agent P7, where W1 = W a

P6,P7, W2 = Tr,3W
a
P6,P7,

W3 = Tt,3W
a
Q1,P7 and W4 = Tt,3W

a
R1,P7. In other words,

W2 is the wave that travels from P part of the graph and
reflects from agent P7, and W3 and W4 are waves that
travel from Q and R parts of the graph, respectively, and
transmit through agent P7. Therefore,

W d
P7,P6 = W2 +W3 +W4 (29)

and

XP7 = W a
P6,P7 +W d

P7,P6

= W a
P6,P7 + Tr,3W

a
P6,P7 + Tt,3W

a
Q1,P7 + Tt,3W

a
R1,P7.

(30)

We note that although the numerical validation is done for
a system with acyclic graph topology, the travelling wave
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Fig. 6. The top panel shows the comparison of positions
of the agent denoted as P7 from Fig. 5 simulated by
the state-space approach using (4) (solid line) and
that computed by ’wave’ approach using (14) and
(15) (plus signs). The bottom panel shows individual
contributions of three waves arriving from the neigh-
bouring agents of agent P7.

approach is applicable also for a system with topology that
contains cycles.

4.2 The effect of many neighbours

The local effect of the agent with more than two neigh-
bours is demonstrated on the topology shown in Fig. 7.
The response of the system, when the leader changes its
position from 0 to 1, is given in Fig. 8. We can see that
the more neighbours the agent has the smaller amplitude is
propagated through the agent. The figure also numerically
verifies Lemma 4. Although the DC gain determines the
steady state of the system, we can use it to approximate
its output, in this case the position, even before the whole
multi-agent system reaches the steady state. The trans-
mitted wave is almost settled for time between 35 and
45 seconds and the reflected wave returns back to the P2

agent after about 45 seconds. Therefore the position of the
P2 agent between 35 and 45 seconds is approximated by
(27).

Fig. 7. The star-graph topology of the multi-agent sys-
tem. The central agent, CN, has N neighbours. Each
branch of the star graph has 20 agents with ’L-node’
being the leader of the system.
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Fig. 5. The mathematical simulation of the wave propagating in the graph from Fig. 4. At the beginning, t = 0 s, all
agents are at position 0 except of leader, which changes position from 0 to 1. At intermediate times, the wave
travels to agent P7, where it is partially transmitted to the ’Q’ and ’R’ parts of the graph and partially reflected
back to the leader. The blue circles and red crosses represent W a

i−1,i and W a
i+1,i components of the wave on the ith

agent, respectively. We can imagine these components as the left-to-right and right-to-left wave in the graph from
Fig. 4, or as A and B components in the notation from (6), respectively.
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Fig. 8. Mathematical simulations of multi-agent systems
with different interaction topology. The topology is a
star graph, see Fig 7, with N denoting the number of
neighbours of the central agent CN. The vertical axis
shows position of agent P2.

5. DISCUSSION

The traditional approach based on the state-space de-
scription of the multi-agent system allows us to find a
closed form formula for the transfer function among the
outputs of the agents. For example, we can find the transfer
function TP7,Q1(s) from the output of P7th agent to the
output of Q1th agent in Fig. 4. This transfer function
TP7,Q1(s) then captures all the interactions among the
agents and effect of the boundary conditions of the system.
Hence the transfer function describes the overall behaviour
of the multi-agent system. This overall description is very
useful in determining whether the multi-agent system is
(un)stable or reaches a consensus. However, it lacks in
describing the local behaviour of the system.

On the other hand, the transfer function W a
P7,Q1/W

a
P6,P7

or W a
P7,Q1/W

a
R1,P7 describes the interaction among the

agents from the local perspective, which means that it does
not consider neither the interactions among other agents

nor the effect of the boundary conditions. The closed loop
formulas for this local interaction are given in Theorem 1.
The approximate amplitude of the transmitted/reflected
wave is given by the DC gains carried out in Lemma 4 and
shown in Fig. 8. This local, travelling-wave, description is
the main contribution of the paper.

The travelling wave approach can also be used to de-
scribe the overall behaviour of the system as shown in
Fig. 6. However, this again requires to consider interactions
among all the agents, which is rather cumbersome with
this approach.

Therefore, we consider the travelling wave approach as
a complementary approach to the traditional state-space
approach, since it gives insight into local interaction of a
multi-agent system, which is particularly useful for a large-
scale multi-agent system.

6. CONCLUSIONS

This paper describes the behaviour of the multi-agent
system from the local point of view. It reveals the wave-
like behaviour, which is particularly apparent in a large-
scale multi-agent system. The main advantage of the
proposed description is that it analyses the local behaviour
of individual agents. By the analysis of the travelling wave
and its reflection on the agents, we can estimate, how the
output, for instance the position, of one agent propagates
in the multi-agent system. This can serve, for example, to
identify the locations of the agents that are responsible for
unnecessary amplification/attenuation of the wave.
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Appendix A. PROOF OF LEMMA 4

If there is at least one integrator in the open-loop system
of the agent, M(s), then

lim
s→0

TN = lim
s→0

M(s)

1 +NM(s)
=

1

N
(A.1)

and

lim
s→0

G = lim
s→0

1

2
α(s)− 1

2

√
α2(s)− 4 = 1, (A.2)

since lims→0 α(s) = lims→0 1/M(s) + 2 = 2. Then

κt = lim
s→0

Tt,N = lim
s→0

1

G2
lim
s→0

TN (1−G2)

G−1 −NTN
= 1 · 0

0
. (A.3)

Applying L’Hopital’s rule on the second limit gives

Tlim = lim
s→0

T ′N (1−G2) + TN (−2GG′)

−G−2G′ −NT ′N

= lim
s→0

T ′N (1−G2)

G′
+ TN (−2G)

−G−2 − NT ′N
G′

(A.4)

where ′ denotes derivative with respect to the Laplace
variable s.

We denote M(s) = n(s)/d(s), where n(s) and d(s) are
the numerator and denominator polynomials of M(s),
respectively. Then,

T ′N (s) =

(
n(s)

d(s) +Nn(s)

)′
=
n′(s)d(s)− n(s)d′(s)

(d(s) +Nn(s))2
.

(A.5)

and

G′ =
1

2
α′ − αα′

2
√
α2 − 4

, (A.6)

where

α′ =
d′(s)n(s)− d(s)n′(s)

n2(s)
. (A.7)

Now, we need to distinguish between the number of
integrators in M(s).

A.1 One integrator in M(s)

One integrator in M(s) causes that lims→0 d
′(s) 6= 0 and

lims→0 d(s) = 0, hence lims→0 T
′
N 6= 0 and | lims→0 T

′
N | ≤

∞.

Due to one integrator also lims→0 α
′ 6= 0 and consequently

lims→0G
′ = −∞. Substituting for TN , T ′N , G and G′ into

(A.4) gives Tlim = 2/N then

κt = lim
s→0

Tt,N = lim
s→0

1

G2
Tlim = 1 · 2

N
=

2

N
. (A.8)

A.2 More than one integrator in the OL

For two and more integrators is lims→0 d
′(s) = 0 and

lims→0 T
′
N = 0, but lims→0 α

′ = 0. Hence, we need to

separately treat limit α′/
√
α2 − 4 as follows

α′√
α2 − 4

=
d′(s)n(s)− d(s)n′(s)

n(s)
√
d2(s) + 4d(s)n(s)

=

=
sp/2

(
s(p/2)−1d′(s)n(s)− sp/2d(s)n′(s)

)
sp/2n(s)

√
spd2(s) + 4d(s)n(s)

,

(A.9)

where p is the number of integrators in M(s) and the
overline symbol denotes the polynomial that has factored
out the highest power of s, e.g. d(s) = spd(s) or d′(s) =
s(p−1)d′(s). Carrying out the limit of G′ in view of (A.9)
gives

lim
s→0

G′(s) =


−∞ if p = 1,

λ ∈ R if p = 2,

0 if p ≥ 3.

(A.10)

Therefore, substituting for T ′N , G and G′ into (A.4) gives

κt = lim
s→0

Tt,N = lim
s→0

1

G2
Tlim = 1 · 2 lim

s→0
TN =

2

N
. (A.11)

The DC gain of the ’reflected’ transfer function is carried
out from (24) as

κr = κt − 1. (A.12)


